Distortion-Free Nonlinear Dimensionality Reduction

نویسندگان

  • Yangqing Jia
  • Zheng Wang
  • Changshui Zhang
چکیده

Nonlinear Dimensionality Reduction is an important issue in many machine learning areas where essentially low-dimensional data is nonlinearly embedded in some high-dimensional space. In this paper, we show that the existing Laplacian Eigenmaps method suffers from the distortion problem, and propose a new distortion-free dimensionality reduction method by adopting a local linear model to encode the local information. We introduce a new loss function that can be seen as a different way to construct the Laplacian matrix, and a new way to impose scaling constraints under the local linear model. Better low-dimensional embeddings are obtained via constrained concave convex procedure. Empirical studies and real-world applications have shown the effectiveness of our method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Manifold Representation of Data: An Information Theoretic Approach

We introduce an information theoretic method for nonparametric, nonlinear dimensionality reduction, based on the infinite cluster limit of rate distortion theory. By constraining the information available to manifold coordinates, a natural probabilistic map emerges that assigns original data to corresponding points on a lower dimensional manifold. With only the information-distortion trade off ...

متن کامل

Cartogram representation of the batch-SOM magnification factor

Model interpretability is a problem of knowledge extraction from the patterns found in raw data. One key source of knowledge is information visualization, which can help us to gain insights into a problem through graphical representations and metaphors. Nonlinear dimensionality reduction techniques can provide flexible visual insight, but the locally varying representation distortion they produ...

متن کامل

Image feature optimization based on nonlinear dimensionality reduction

Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping between highand low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible way for solving such a problem. We ...

متن کامل

Robust cartogram visualization of outliers in manifold learning

Most real data sets contain atypical observations, often referred to as outliers. Their presence may have a negative impact in data modeling using machine learning. This is particularly the case in data density estimation approaches. Manifold learning techniques provide low-dimensional data representations, often oriented towards visualization. The visualization provided by density estimation m...

متن کامل

Adaptive Neighborhood Graph for LTSA Learning Algorithm without Free-Parameter

Local Tangent Space Alignment (LTSA) algorithm is a classic local nonlinear manifold learning algorithm based on the information about local neighborhood space, i.e., local tangent space with respect to each point in dataset, which aims at finding the low-dimension intrinsic structure lie in high dimensional data space for the purpose of dimensionality reduction. In this paper, we present a nov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008